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It is shown that the charged symplectic form in Hamiltonian dynamics of classical 
charged particles in electromagnetic fields defines a generalized affine connection 
on an affine frame bundle associated with spacetime. Conversely, a generalized 
affine connection can be used to construct a symplectic 2-form if the associated 
linear connection is torsion-free and the antisymmetric part of the R 4. trans- 
lational connection is locally derivable from a potential. Hamiltonian dynamics 
for classical charged particles in combined gravitational and electromagnetic 
fields can therefore be reformulated as a P(4) = O(1, 3) |  4. geometric theory 
with phase space the affine cotangent bundle A T * M  of spacetime. The source- 
free Maxwell equations are reformulated as a pair of geometrical conditions on 
the ~4. curvature that are exactly analogous to the source-free Einstein equations. 

1. I N T R O D U C T I O N  

The problem of geometrizing the relativistic classical mechanics of 
charged test particles in curved spacetime is closely related to the larger 
problem of finding a geometrical unification of the gravitational and electro- 
magnetic fields. In a geometrically unified theory one would expect the equa- 
tions of motion of classical charged test particles to be fundamental to the 
geometry in a way analogous to the way uncharged test particle trajectories 
are geometrized as linear geodesics in general relativity. Since a satisfactory 
unified theory should contain the known observational laws of mechanics 
in some appropriate limit, one can gain insight into the larger unification 
problem by analyzing the geometrical foundations of classical mechanics. 

This paper is concerned with the question of the geometrical unification 
of the gravitational and electromagnetic fields, and accordingly we analyze 
the geometry of Hamiltonian mechanics of classical charged particles in 
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electromagnetic fields. We show that the usual formulation in terms of 
symplectic geometry on the momentum-energy space T*M defines a 
P(4) = O(1, 3)| R 4. generalized affine connection on an affine frame bundle 
A M  of spacetime M. The resulting affine geometry on spacetime is the 
geometry of the recently proposed P(4) geometrical theory of gravitation 
and electromagnetism (Norris, 1985; Kheyfets and Norris, 1988). The new 
features of the P(4) theory are that the gauge group associated with the 
electromagnetic field is the group R 4. of momentum-energy translations, 
with the Maxwell field tensor playing the role of the •4. gauge potential, 
and the momentum-energy phase space is the affine cotangent bundle 
AT*M. 

There are two standard ways to formulate canonical mechanics for a 
classical charged particle in an electromagnetic field in spacetime. The more 
familiar method uses standard Poisson brackets (i.e., the canonical symplec- 
tic 2-form on phase space T ' M )  and the generalized momentum-energy 
~r,,=mg~,vScv+ eA u. Because the electromagnetic vector potential A, occurs 
explicitly in the definition of ~r, the generalized momentum-energy is not 
gauge invariant, and this leads to difficulties in physical interpretation. How- 
ever, no such problem arises with the spacetime equations of motion derived 
from the canonical equations, because they involve only the gauge-invariant 
field strengths Fuv= V~Av-V~A~,. To avoid the difficulties with interpreta- 
tion, one may use an alternative method (Torrence and Tulczyjew, 1973; 
Sniatycki, 1974; Woodhouse, 1980) in which the momentum-energy variable 
~r~ is the gauge-invariant kinetic momentum-energy mgujc v, but then one 
must also use nonstandard Poisson brackets (i.e., the "charged" symplectic 
2-form). In addition, this alternative approach employs the "free-particle" 
Hamiltonian ~vf = (1/2m)(m 2 + g~Vzrjrv) even though the particle in question 
is a charged particle. 

The transformation between these two formulations is the noncanonical 
transformation zr~,~Tr~,=~r~,+eA~, which is the well-known "substitution 
rule" of elementary mechanics. When this transformation is treated as a 
momentum-energy translation one must generalize the usual definition of 
phase-space coordinates in terms of linear frames and use affine frames 
instead. This leads from GI (4) covariance to A(4)= GI (4) |  4. covariance 
and means that the bundle of linear frames, the geometrical arena for the 
linear Riemannian geometry of general relativity, is replaced by the bundle 
of affine frames. A generalized affme connection on A M  may be thought of 
(Kobayashi and Nomizu, 1963) as composed of a pair (F, K), where F is a 
linear connection and K, a (0, 2) tensor field on spacetime, represents the 
R 4. translational part of the connection. We show that the charged symplec- 
tic form defines an affine connection on AM with the electromagnetic field 
tensor playing the role of the R 4. part of a P(4) affine connection, while the 
linear geometry is the Riemannian geometry of spacetime. 
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In Section 2 we show how the charged symplectic form Sc is related to 
momentum-energy translations, and how one may extract from Sca defini- 
tion of a vector bundle affine connection on T*M. Then in Section 3 vector 
bundle affine connections are related to affme connections on AM. In the 
process we find that it is natural to generalize the phase space of classical 
charged particles in electromagnetic fields from T*M to the affine cotangent 
bundle AT*M. 

In Section 4 we reverse the process and find necessary and sufficient 
conditions for an arbitrary affine connection on A M  to define a symplectic 
structure on AT*M. The conditions are: (1) the associated Gl(4) linear 
connection must be torsion-free, and (2) the skew-symmetric part of the 
R 4. translational connection must be locally derivable from a potential. 

In Section 5 we use the results developed in earlier sections to reinterpret 
the canonical mechanics of charged particles on A T * M  in terms of P(4) 
affine geometry on AM. We first show that the Hamilton equations of motion 
on spacetime, the Lorentz force law, can be reinterpreted as the equation of 
an affine geodesic on M with respect to the natural affme connection on A M  
induced by the charged symplectic form. We then complete the reinterpreta- 
tion by showing that the Maxwell equations for the source-free electro- 
magnetic field have a natural geometrical formulation in terms of the 
R4-curvature tensor that is remarkably parallel to the geometric vacuum 
Einstein equations. In an Appendix we provide the basic material on the 
affine frame bundle and related associated bundles that is needed in 
Section 3. 

The standard affine frame bundle A M  of a manifold M consists of all 
triples (p, e,, t), where p~M, (e,) is a linear frame at p, and t is a tangent 
vector at p (Kobayashi and Nomizu, 1963). The structure group of AM is 
the affine group A(4)= GI (4)| a with group multiplication 

(A1, ~1)" (A2, ~2) ~-- (AI A2, AI" ~2 + ~1), V(A1, ~,), (A2, ~2) EA(4) 

In this paper we consider the momentum-energy of a particle as being a 
covariant quantity, and in order to deal with affine covariant vector fields 
on a manifold in a natural way we will consider in place of A M  a modified 
affine frame bundle AM. The points of .~M are triples (p, eu,/3), where 
p~M, (eu) is a linear frame atp, and/3 is a covector atp. The structure group 
of ~]M is the affine group 4(4)= GI (4)| 4. with group multiplication 

(AI, ~1)" (A2, ~2) =(A1A2, 41" A2+ ~2), V(A~, ~,), (A2, ~2)~3(4) 

4(4) is isomorphic to the opposite group of A(4). Both A M  and .~M contain 
the linear frame bundle of M as subbundles, so that the linear differential 
geometry of a manifold may be described using either affme bundle. In order 
to deal with affine covariant vector fields in an efficient way, we will work 
with AM rather than with AM. However, in order to simplify notation, we 
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will refer to i ]M as the affine frame bundle of M and denote it simply by 
AM.  Similarly, we will write A(4) for ~](4) and denote by P(4) the Poincar6 
subgroup O(1, 3) |  4. of A(4). 

2. THE R 4. AFFINE CONNECTION DEFINED BY THE 
CHARGED SYMPLECTIC 2-FORM 

The momentum-energy phase space for Hamiltonian dynamics of 
a single particle in fiat spacetime (M,g)  is the cotangent bundle 

T * M  pr% M. Here proj is the projection map proj(p,/3) =p for fl a covector 
at p e M .  Coordinates y i= (qM, Try), i= 1 , . . . ,  8, p, v = 1 . . . . .  4, on T * M  are 
standardly defined in terms of coordinates x u and the associated linear frame 
field (%) = (O/~x u) on M by 

(y i ) (p ,  fl) = (q~, zrv)(p, ]3) 

= (x"(p),/3(e~(p))) (1) 

In this definition qU= (proj),(xU), while the vertical coordinates zr~ are the 
real-valued functions on T * M  defined by 

try(p,/3) :=/3(ev(p)) (2) 

for p--*/3(p) a section of T*M.  
The canonical symplecticform on T * M  is the 2-form S:=dO, where 0 is 

the canonical 1-form defined invariantly by O(p,p)(X) =/3( (pro j ,X) (p ) )  for X 
a vector field on T*M.  In the local coordinates (qU, rr~), S takes the form 

S= drc, A dq u (3) 

The free-particle dynamical system is defined by S and the Hamiltonian 
~ff : T* M ~ R given by 

o~f(qU, try) := 1 [m 2 + gUVrc, lrv ] (4) 

The g~V in (4) are the components of the spacetime metric tensor and 
take the form diag(-1,  1, 1, 1) in fiat spacetime when the spacetime coordi- 
nates x u are Lorentzian coordinates and the linear frame (e~) is an orthonor- 
mal (O.N.) linear frame field on M. 

The Hamiltonian vector field X ~  on T * M  determined by a Hamiltonian 
J f  is the unique solution of the equation 

d~f = - X~e _1S (5) 

The hook product is defined for a 2-form co A A, and a vector field X by 
x ~  (coA ~) = co(x);L- z (x)co. 
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The differential equations for the integral curves of  X~e determined by 
(4) are the pair of  Hamilton equations 

_ aJ/g _ ;r v~ (6a) 
a~r~ m 

#v = - = 0 (6b) gq~ 

Combining these phase space equations in the usual way leads to the space- 
time free-particle equations of  motion 

5/~'= 0 (7) 

The standard prescription for introducing the electromagnetic inter- 
action is to introduce the electromagnetic vector potential A = Aue u via the 
"substitution rule" 

~v---*Trv = zrv+eJv ,  .~v:= proj*(A~) (8) 

O n  phase space T * M  this may be considered as the coordinate 
transformation 

( qU, zr~) ~ ( (t ~', Tr~) = ( q u, rCv + e.4 ~) (9) 

This transformation is clearly a vertical translation along the fibers of  T ' M ,  
and it is incompatible with the definition of coordinates given above. Recall 
that Try(p, fl) = f l (e~(p)) ,  where (ev) is a linear frame field. Under the change 
of  linear frame 

(eu) ~ (eu) = (e~a~) 

with (a~)eO(1, 3) the coordinates v+4 y = Zrv undergo linear homogeneous  
transformations, while (9) is inhomogeneous.  

To allow for the translations (9), we use affine frames (see the Appen- 
dix) to generalize the definition of the coordinates ~rv. An affine frame field 
on M is denoted by (e u, t), where (eu) is an O.N. frame field and t is a 
covector field on M, the origin of the affine frame. Define affine coordinates 
yi, i=  1 . . . . .  4, by q~= (proj)*(x u) as in (1), and for i = 5 , . . . ,  8 by 

zru(p, fl) = ( f l -  t (p )  )(  eu(p)  ) 

= f l (eu(p))  - tu(p))  (10) 

Let (e u) denote the coframe dual to (eu). Then under the change of  affine 
frame 

(eu, t ) ~ ( ~ , ,  ? ) =  (e~a~, t -~z (a -1 )Z~eV) ,  (a~, ~ ) e P ( 4 )  (11) 
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the transformation law for coordinates (qU, zv) is 

(qU, ~v)...}(~, ~v) = ((a-1)~q z, a~ zrx + ~v) (12) 

The coordinate translations (9) are well defined with respect to these 
affine coordinates. In particular, the coordinates (~u, ~v)= (qU, try+ e Jr)  in 
(9) are defined by the affine frame (e u, ear) if (q~, ~r~) are defined by (e~,, 0). 
In Section 3 we will see that this generalization means that we have in fact 
replaced T * M  with A T * M ,  the atfine cotangent bundle. 

Transforming the Hamiltonian ~vf given in equation (4) to new coordi- 
nates (~u, ~ )  using the momentum-energy translation (9), we get 

g ( ~ ' ,  ff~- e2~) = ~ ( ~ ,  ~0 

1 
- [m2+gU~(fr#-eJu)(~cv-e2~)] (13) 

2m 

We obtain this Hamiltonian whether we use the "substitution rule" or the 
coordinate transformation interpretation. 

To complete the charged particle system, we must choose a new sym- 
plectic 2-form S defined by 

g(r rr~)=drr~/X dq" (14) 

The 2-form ~ is one representation of the "charged" symplectic form [cf. 
equation (21)] (Torrence and Tulczyjew, 1973; Sniatycki, 1974; Woodhouse, 
1980). 

The equations that follow from 

d ~  = - X H  2 ~  05)  

are now the well-known Hamilton equations 

(r = • ~'~(~- e~) 
ds m 

(16) 
d e 

- -  2 -  
a S  (~) m (~v2~)(~- e2~) 

These equations combine to give the Lorentz force law 

5f = e FU 2 z (17) 
m 

on spacetime, where Fuz=VUAz-VzA  u is the (1, 1) form of the Maxwell 
field tensor. 

We observe that the choice (14) means that the coordinates (~u, ~v) 
are canonical coordinates for the charged particle system. Had we not 
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introduced the new symplectic form S, but merely transformed S to new 
coordinates using (9) as we did with ~f, we would have found [F:= proj*(F)] 

S(q, re) = S(q, f c -  e.~ ) 

e ^ kt v =a~. A aq"-~ F~,.@ A@ 

=g-s (18) 
2 

Thus, the coordinates (~,  ~v) = (q~, ~ )  are noncanonical with respect to S. 
Note that since the Hamiltonian equations are coordinate independent, (13) 
and (18) would lead to equation (7) rather than equation (17). 

Since we now have the momentum-energy phase space coordinates tied 
to affine frames, we can transfer characteristic properties from the coordi- 
nates to the affine frames that define them. We will refer to (e u, cA) as a 
canonical atfine frame and to (e u, 0) as a noncanonical affine frame 
(Kheyfets and Norris, 1988) for the charged particle system. 

We can now transform back to the noncanonical coordinates (qU, zrv) 
defined by (e u, 0) using the P(4) affine transformation inverse to (9), namely 

~ u ~  ~ru = ~u- e.~, (19) 

Using (19) in (13) and (14), we find 

~((1,  7r) = 2~~ zr+ eA) 

= i f ( q ,  zr) 

1 
- [m 2 + gU~zruzr~] (20) 

2m 

and 

S(~, ~)=S(q,  zr+eA) 

=s+ep 
2 

e 
= a',r,~ A de' + ~ F,,,, dq~ A dq " (21) 

This two-form S is the "charged" symplectic form (Torrence and Tulczyjew, 
1973; Sniatycki, 1974; Woodhouse, 1980). 

Thus, although the coordinates (qU, try) defined by (e u, 0) are noncanon- 
ical for the charged particle system, the Hamiltonian is in free particle form 
when expressed in terms of them. An interpretation has been given (Kheyfets 
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and Norris, 1988) of this free particle Hamiltonian in terms of the instantane- 
ously comoving inertial frames used in the operational definition of the 
Lorentz force law. 

We have the situation that Sis in canonical form (14) relative to (e u, eA) 
but in noncanonical form (21) relative to (eu, 0). Define 1-forms Cu on T * M  
by 

e 
Cv:= drc u -  -~ ~ dq ~ (22) 

The symplectic 2-form S can now be expressed relative to (qU, m) as 

S =  C u A dq u (23) 

We will see below that the C u define an R 4. affine connection. Accordingly, 
we can refer to coordinates (qU, *rv) as eovariant canonical coordinates, the 
covariance referring to P(4) transformations (11). 

Since dF= 0 for a Maxwell field, we verify easily that ~ is closed: 

d ~ = d C u A d q u = e  dP=O (24) 
2 

However, dC u # 0 generally, since 

e 
dC u = ~ Ot~Pal u dq ~ A dq e (25) 

The 1-forms C u are exact if and only if the electromagnetic field is covariant 
constant (static and uniform) on Minkowski spacetime (Norris, 1985). 

The significance of (22) is due to the following theorem (Hermann, 
1975). Let 0 u denote 1-forms defining an Ehresmann connection on the 
vector bundle T*M. In an affine coordinate system (qU, toy) these 1-forms 
have the general form 

Ou= &ru - fuv dq ~ (26) 

where the fur are 16 arbitrary functions on T*M. In the theorem that follows, 
an affine connection on T * M  is an Ehresmann connection that defines affine 
(i.e., linear, inhomogeneous) maps between the fibers of T * M  by parallel 
transport. 

Theorem (Hermann, 1975). The functions fuv on T * M  determine an 
affine connection for T * M  pr% M if and only if they are of the inhomo- 
geneous-linear form 

f ~ =  Bu~(q) + B~(q)zrz (27) 
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where the (Buy, BZ~) are pullbacks of functions on M, which uniquely 
determine the affine connection. Conversely, such functions can be given 
arbitrarily, and then determine an affine connection. 

Introduce connection 1-forms cou and co~ by 

cou:= Bvu dq v 

co~:= B~ u dq z (28) 

From (26)-(28) we get for the general form of affine connection 1-forms 
on T * M  

Os,= dzs, - co s, - c o ~ z ~  (29) 

where cou and co~ are pullbacks under proj of 1-forms on M. Comparing 
(22) and (29) using (28), we find that the C u define an affine connection on 
T * M  with 

e .Puv dq ~ (30) co,=~ 

co~=0 (31) 

3. GENERALIZED AFFINE CONNECTIONS ON A M  

The affine connection just described is a vector bundle affine connection 
(Hermann, 1975) on T*M.  We show in this section that it corresponds to 
a generalized affine connection on the affine frame bundle AM,  and that 
phase space with electromagnetic fields should accordingly be considered as 
the affine cotangent bundle A T * M  rather than T*M.  The reader is referred 
to the Appendix for details relating to the affine frame bundle of a manifold 
and related associated bundles. 

In the appendix we recall that the fact that the bundles 

E1 = L M  XaL(4 ) ~4. 

and 

E z = A  M xA(4 ) ~4, 

associated to L M  and AM,  respectively, are isomorphic with T*M. The 
bundle Ez is the affine cotangent bundle. If one is concerned only with the 
invariant representation of covectors on spacetime, then T * M  is sufficient, 
and E1 and E2 need not be considered. However, in physical applications 
one wants to keep track of the components of covectors and the frames that 
define the components, and for such purposes the associated bundles E1 and 
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E2 are especially useful. In particular, let us reconsider the theorem on affine 
connections on T * M  quoted in the last section. 

The assumptions of the theorem require a coordinatization of T * M  by 
affine coordinates, and not simply linear coordinates. In the Appendix it is 
shown [cf. equation (A13)] that in order to introduce aifine coordinates on 
T * M  one needs the identification of E2 with T ' M ;  hence, in order to discuss 
the geometry of affine connections on T ' M ,  we also need the identification 
of E2 with T * M .  If  we consider the affine connection 1-forms 0~ given in 
(29) as defined on E 2 = A T * M ,  then we can compare this connection with 
affine connections on A M .  

A generalized affine connection (Kobayashi and Nomizu, 1963) on A M  
is an a (4 )=g l  (4)~R4*-valued 1-form co satisfying the connection transfor- 
mation law 

R~,e) co--- ad(a, ~ ) - 1. co (32) 

Here R(~,o denotes right translation on A M  by (a, 4)~A(4) and ad denotes 
the adjoint action of  A(4) on its Lie algebra a(4). Let (U, x ~) be a coordinate 
chart on M and t a covector field on U. Then the section o-: U ~ A M  defined 
by 

(p L t,,,) (33) 

is an affine frame field on M that defines affine coordinates (qU, ~ )  on A T * M  
as in (10). The components co~ of to relative to the affine frame field p~o ' (p )  
are given by 

co~:= or*co= ~ogL~ ~coT- (34) 

The direct sum is in the Lie algebra a(4), and the subscripts L and T refer 
to "linear" and "translational," respectively. If  we denote the standard basis 
of gl (4) by (E~) and the standard basis of R 4. by (r~), then co~ may be 
expressed as 

co~= r ~ t K f  (35) 

The FUr = F~v dx ~ are linear connection 1-forms and are independent of the 
origin t of the affine frame, while the translational connection 1-forms 
tK u = 'Kuv dx  v have left superscripts to indicate the dependence of the compo- 
nents of o r  on the origin of  the affine frame. I f p ~ ( p )  = (p, e u, s) is another 
affine frame field on U, then the components SK, are related to the 
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components tKu by the R 4. connection transformation law (Hermann, 1975; 
Norris, 1985) 

SKuv= tK~v+ V ~(s u -  tu) (36) 

Finally, from a variant of  a theorem in differential geometry (Kobayashi 
and Nomizu, 1963) we know that affine connections on A M  are in 1:1 
correspondence with pairs ( F ~ ,  tKu~) defined as above. 

To understand in a simple way how a connection on A M  is related to 
the vector bundle affine connection given by (29), we compute the covariant 
derivative of  a smooth section/3: M ~ A T * M  of the affine cotangent bundle 
A T * M .  Associated with ]3 is a unique funct ion f a : A M ~ A 4 *  defined by 
(Kobayashi and Nomizu, 1963) 

fa(P, eu, t):= (p, eu, t ) -  ' (/3(p) ) (37) 

From equations (10) and (A13) we see that evaluating this function at 
an affine frame (p, eu, t) is equivalent to finding the coordinates of 
(p, f l ( p ) ) ~ A T * M  with respect to the affine coordinates (qU, zr~) defined by 
the affine frame. We now compute the covariant derivative of  13 in two ways, 
first using co on A M  and then using the connection 1-forms 0 u on A T * M  
given by (29). 

The exterior affine covariant derivative of  [3 with respect to co is defined 
in terms o f fa  by 

Df~:=dfa+ co " fp (38) 

The "dot"  in co. fp denotes the action of  the Lie algebra a(4) o n  A 4.  induced 
by the standard action given in (A7). Pulling the A4*-valued 1-forms Dflj 
back to spacetime M using the section cr given in (33) and using (34) leads 
to 

cr*(Dfp) = d(cr*fp) + *coL" (o-*ft~) - *cot 

= d(fao ~r) + *coL" (fp o or) - *cot (39) 

We introduce the notation t/3u(p) =/3u(P) - tu(P) for the coordinates of  
/3 with respect to the affine frame field (33). Then, since 

fp o o'(p) = zcu(p, fl)r u = (/3u(p)tu(p) )r u (40) 

we may rewrite equation (39) in component form using (35) as 

Dr~3 u = dt/3u - F ~( '  /3,,) -tK~, (41) 

Evaluating these 1-forms at g/gx  v yields the components formula 

D,,(t/3u) = 8v( t/3 u) - F ~u(t/3;O - tKv u (42) 
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This is the local coordinate formula for the A(4) covariant derivative of an 
affine covector t :  M - - + A T * M .  The differences between this formula and the 
formula Vuflv = d u t y -  FuZvflz for the linear covariant derivative of a covector 
t :  M ~  T * M  are due to the extra R 4. degrees of freedom in A T * M .  

To evaluate the covariant derivative of t :  M ~ A T * M  using the affine 
connection 1-forms 0 u given in (29), we evaluate the pullback fl*Ou of the 
0~ to M. The geometrical picture is that when a covector field is thought of 
as a section of A T * M ,  then the image of its domain under the map 
p--, ,(p,  f l (p ) )  is a surface in A T * M .  The fl*O u are equivalent to the restric- 
tions of the 1-forms 0" to (vectors tangent to) this surface. From (29) we 
find 

/~*0u = ~* (&ru) -/~* cou-/~* (co~rv) 

= d(zru o t ) -  fl*o) u -  fl*co~(zr~ o t )  (43) 

Since 

zr, o f l (p)  = zcu(p, f l (p)  ) 

= flu(P) - t , ( p )  

: % (44) 

we may rewrite (43) using (28) and (44) as 

fl*Ou = a(tfl,,) - f l*cou(tflv) - f l*~u  (45) 

The statement of the theorem quoted in Section 2 refers to a fixed, but 
arbitrary, affine coordinate system, and as such the notation used in the 
theorem is somewhat incomplete. The connection 1-forms co u must also 
transform according to the rule (36). We will therefore write ~c0~ in place of 
~o~ to indicate the dependence on choice of origin of the affine frame. Accord- 
ing to the theorem of Section 2, the 1-forms co~ and too u are pullbacks under 
proj,~r of 1-forms on M. Define 1-forms 7vu and tk~, on M by 

v . ' *  v co , . =  proJAr(Tu)  (46a) 

tco~:= proj* r (tku) (46b) 

Since projAr o t =  idlM, equation (45) can be reexpressed as 

f l *  O u = d ( t  f l , )  - yv~(  t f lv)  - t k  u (47) 

Comparing this equation with equation (41) leads to the identification 

F ~ = 7~  (48a) 

'K, = 'k, (48b) 
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Since the pair (y~,  tku) defines an affine connection on A T * M ,  and 
(F ~, tK~,) defines an affine connection on AM,  equations (48) gives a corre- 
spondence between affine connection on these two bundles. 

In order to apply this correspondence to the affine connections (29)- 
(31) based on the charged symplectic form given in (21), we recall that (21) 
was defined relative to the noncanonical affine frame field (p, e~(p), 0). Thus, 
we rewrite (29)-(31) as 

~ = a~r~-~ o~3~v 

~ cou = 2 Fuv dq" 

c0~=0 

From equations (48)-(51) we may infer 
charged symplectic 2-form in special relativistic symplectic mechanics defines 
an affine connection on the affine frame bundle A M  of fiat spacetime. The 
Maxwell field tensor, thought of as the covector-valued l-form 

( F m, dx ~ ) |  u 

plays the role of the R 4. part of the connection, and the linear part is the 
flat Minkowski connection. Generalizing to a curved spacetime, the linear 
part of the affine connection would correspond to the Riemannian linear 
connection, and in place of (51) one would find the co u being given by the 
1-forms of the Levi-Civita connection. 

(49) 

(50) 

(51) 

the following result. The 

4. S Y M P L E C T I C  S T R U C T U R E  F R O M  AN AFFINE 
CONNECTION ON A M  

In Sections 2 and 3 we saw how to use the charged symplectic 2-form 
on A T * M  to define a generalized affine connection on the affine frame 
bundle of Minkowski spacetime. We now reverse the process and find the 
conditions that a generalized affine connection on A M  define a symplectic 
structure on A T * M .  

Let co denote a generalized affine connection on AM,  with components 
(F~, tK~) given by (35) relative to the affine frame field (33). Consider the 
connection 1-forms tO, defined on A T * M  by 

'0~ = a ~ - ' K ,  - r ~ v  (52) 

To avoid excessive notation in the following formulas we are here abusing 
notation slightly by assuming that F and tK are defined on A T*M. Define 
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the linear and translational curvature 2-forms fU u and tq~u by (Kobayashi 
and Nomizu, 1963; Hermann, 1975) 

~ = ~z,~, v dq ~ A dq 'r dF  ~ + F v A F ~u (53) 

' ~  u = ' ~  uz~ dq z A dq ~= d(t K~) - F ~ A t Kv (54) 

The transformation law for the translational curvature 2-forms under the 
change of origin (p,  e . ,  t ) ~ ( p ,  eu, t +  ~ue") is 

(55) 

The torsion 2-forms Tu of the linear connection F may be expressed in 
the following various ways: 

T ~ = T ~  dq z A dq ~ 

__ ~ dqZ A dq ,~ - -  F [Z~l 

= F"~ A dq z (56) 

In Section 2 it was shown that the charged symplectic 2-form can be 
rewritten as S = C~ A dq',  and that C~ = d~r,,- (e/2)F~,v dq v can be identified 
with the 1-forms of the translational part of a generalized affine connection 
on A M .  Suppose now that we start with a generalized affine connection on 
A M  and use it to induce 1-forms '0. of a vector bundle affine connection on 
A T * M .  These 1-forms '0 u can then be used to define a 2-form S:=tO~Adq u 
on A T * M .  What are the necessary and sufficient conditions that the '0u 
must satisfy in order that S be a symplectic form on A T * M ?  Inserting the 
expressions given in (52) for the t0,, we obtain 

S =  'Ou A dq ~' 

= dTr u A dq ~ - tK~,v dq u dq v -  F ~z. dq z A dqUzc~ (57) 

Decompose 'K~,v as 

where 

%v ='F"v+'g.v (58) 

iF.v:= 'KE.vl 

'Hvv := tKcuv) 

Now (57) may be rewritten using (56), (58), and (59) as 

S = d~.  A dq J' - 'Fur dq ~ A dq v -  T~'zcv 

= S c -  ~F- T"~. 

(59a) 

(59b) 

(60) 
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Thus, only the antisymmetric part tF,~ of tKuv and the torsion T ~ of F~ enter 
into the definition of S. 

Theorem. The 2-form S = ' O u A d q  u defines a symplectic 2-form on 
A T * M  if and only if (a) the associated linear connection is torsion-free, and 
(b) d( tF)  = O. 

P r o o f  Computing the exterior derivative of S=tO, u A d q  u using 
(60) yields 

dS  = - d(tFu,,) A dq u A dq v_  ( d r  u) zr u _ T u A dzr u (61 ) 

Suppose that S is a symplectic 2-form so that both sides of (61) vanish 
identically. Then by linear independence the last term on the right-hand side 
must vanish separately since it is the only term that contains a factor of dTr u. 
This implies that 

T ~ = 0 (62) 

so the associated linear connection is torsion-free. The vanishing of the 
remaining terms on the right-hand side of (61) now implies 

d( 'F)  =0 (63) 

as was to be shown. 
Conversely, suppose S = t0 u A dq u and the components of tO u satisfy (62) 

and (63). Then from (61) we get dS=O.  The nondegeneracy of S follows 
from the structure of  S and the '0 u. �9 

Condition (b) of  the theorem implies that locally ~Fuv= 'KEuv ] is derivable 
from a potential: 

'Fu~= Ou(tAv) -- (~v(tAta) (64) 

Since the tensor 'K that represents the translational part of the afgine connec- 
tion depends explicitly on the origin of the affine frame field, it may appear 
that d( tF)  = 0 may hold with respect to one origin field t, but not with respect 
to another origin field. That this is not the case can be seen from the following 
argument. 

It is well-known that the curvature 2-forms f]% of a torsion-free linear 
connection satisfy the identity 

fl~',, A dq ~' = Ou ,~ dq" A dq z A dq" = 0 (65) 

Using the transformation law (55), we can write 

�9 ~ A de' ='e,, A dq" + ~ A dq;r (66) 
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Using (65) in this equation reduces it to 

"0 u A dq" = '0 .  A dq ~ (67) 

This implies that the 3-forms 'O. A dq" are actually independent of the origin 
of the affine frame when the associated linear connection is torsion-free. 
Expressing these 3-forms in component form, we find 

tO. A dq" = d(t Ku) A dq" 

= i~[vtKw~] dqVAdq~Adq u 

= O[vtF.~] dq"Adq'~Adq " (68) 

Then 

tO.A dq"=O~d('F~vdq" A dq ~) =0 (69) 

The result is that the condition that the 2-form 'F.~ dq"A dq ~, derived from 
'K~v dq ~, be closed is translational invariant. That is to say, if ~F.v dqU A dq ~ 
is closed, then SF.~ dq" A dq v is also closed. We formalize these remarks in 
the following. 

Corollary. If a generalized affine connection '0. has a torsion-free linear 
part, then the condition d('F) = 0 is independent of the origin of the affine 
frame. 

5. P(4) AFFINE REINTERPRETATION OF 
CANONICAL EQUATIONS 

We have shown that the charged symplectic 2-form on AT*M defines 
the R 4. part of a generalized affine connection on the affine frame bundle 
A M  of the spacetime manifold M. Conversely, if (F'v, tK.) is an affine 
connection such that (a) F'v is torsion-free and (b) the 2-form tF derived 
from tK. is closed, then we have a prescription for constructing a charged 
symplectic 2-form on A T * M  in which tF plays the role of the Maxwell field 
tensor. Thus, that part of symplectic mechanics on A T * M  related to only 
the symplectic 2-form, that is, independent of the choice of Hamiltonian, is 
related to the geometry of a class of generalized affine connections on the 
affine frame bundle of spacetime. 

Now in symplectic mechanics one has a Hamiltonian in addition to the 
symplectic 2-form, and the corresponding canonical equations of motion. In 
the case we have been considering, specifically the charged symplectic form 
(21) together with the Hamiltonian (20), the equations of motion lead to 
the Lorentz force law on spacetime. Now that we know that the charged 
symplectic form induces a generalized affine connection on AM, we are led 
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to ask for the geometrical interpretation of the canonical equations of motion 
relative to the induced affine connection. The result, which will not be very 
surprising to geometers and relativists, is that the Lorentz force law becomes 
the equation of a generalized affine geodesic with respect to a generalized 
affine connection. To show this, we consider the equations of motion that 
follow from (15), (20), and (21). These equations can be put into the form 

where 

Ozc~ 

Ds c3q u 

(70) 

(71) 

/Sr~,: = d~r u _ eFuv(t v (72) 
Ds ds 

Remarks." 
(i) The notation D1ru/Ds used in (71) and (72) anticipates the result to 

be established below that (75) represents the covariant derivative, with 
respect to an affine connection, of an affine vector field Jr~ along the trajectory 
of the particle. 

(ii) It is well known that when the Hamiltonian is given by (20) the 
term 

O ~  1 Og ~ 

~qU 2m ~q~' 

on the right-hand side of equation (71) brings in the Christoffel symbols of 
the metric linear connection. In the usual fashion these terms may first be 
reexpressed in terms of ~ using (70). The result can then be transferred to 
the left-hand side of (71) and combined with d ~ / d s  to give 

V~rc~=d~rJds- ~ )  ~ ~ ~Jr~q'4 

the usual formula for the linear covariant derivative of a vector field along 
a curve. 

(iii) The coordinates (qU, ~v) on A T * M  depend on the choice of affine 
frame. As discussed in Section 3, variables that depend on the choice of 
origin of the affine flame should carry an additional left superscript to 
remind us of this fact. Thus, in particular, we relabel our coordinates (qU, if0 
as (qV, ,~r0, where t denotes the origin of the affine flame field defining these 
coordinates. As indicated in Section 3, the charged symplectic form given in 
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the form (21) was defined relative to the affine frame field (p, (O/OxU)(p), 0). 
Accordingly, we shall replace zr u in our formulas with ~ 

When the steps outlined in these remarks are carried out, equations 
(70)-(72) take the form 

0u = 1 gU~(Olrv) (73) 
m 

D(~ - 0 (74) 
Ds 

where now 

(D~ d(~ . . . .  ~  eF .v - ~uxt. t ~)q - uvq (75) 
Ds ds 

Having eliminated the Hamiltonian from the equations of motion, we 
are now in a position to reinterpret equations (73)-(75) geometrically in 
terms of affine connections on A M .  Recall first that these equations are 
defined with respect to the affine frame field (p, (O/t3xU)(p), 0). Thus, 
equation (73) defines the components of the affme vector field zr(s)= 
O(~(s))~mg~,vd~'V/ds along the trajectory s ~ ? ' ( s ) =  (xU(s)) of the particle 
[cf. the remark following equation (All)].  Equations (74) and (75) then 
imply that the Hamilton equations of motion (70)-(72) are equivalent to the 
equation of an affine geodesic (Hermann, 1975; Norris, 1985) with respect to 
the generalized affine connection 

(FU~, ~ = ({L} dx ~, -eF~,v dx  ~) (76) 

Note that the translational part of this affine connection on A M  is twice 
that of our earlier definition (50). We formalize our discussion in the follow- 
hag result. 

Theorem. The equations of motion for the Harniltonian 

9f ~ = ( 1 / 2 m ) ( m  2 + gU~zru~r~) 

and charged symplectic form S = dzr u A dq u + (e/2)F~v dq ~ dq ~ are equivalent 
to the equations of an affine geodesic of the generalized affine connection 
given in (76). 

Finally, we wish to make a few remarks concerning the electromagnetic 
field equations. The discussion presented so far in this paper has been con- 
cerned with the equations of motion of charged particles in the presence of 
given external electromagnetic fields, and not with the Maxwell field equa- 
tions of the electromagnetic field. However, since we now know that the 
Hamilton equations of motion in a curved Einstein-Maxwell spacetime are 
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equivalent to the affine geodesic equations associated with the generalized 
affine connection ({f~}, -eFu~ ), we are led naturally to ask for the geometri- 
cal interpretation of the Maxwell field equations in terms of affine geometry. 
It has been shown (Norris, 1985) that the coupled Einstein-Maxwell field 
equations can be recast as geometrical equations stated in terms of the 
P(4) = O(1, 3)| 4. curvature of the affine connection ({f~}, -eFuv ). Here 
we will consider only the Maxwell equations, and we refer the interested 
reader to an earlier paper (Norris, 1985) for a discussion of the full coupled 
Einstein-Maxwell equations. 

Consider now a generalized affine connection (F, K) on A M  such that 
in the atfme gauge (local section of A M )  (p, ej,(p), o) the components of 
the connection are given by 

F ~  = {f~} (77) 

~ -Fu~  (78) 

Here {~'~} denotes the Christoffel symbols of a spacetime metric tensor, and 
Fuz is an arbitrary antisyrnmetric type (0, 2) tensor field on spacetime. 

From equations (54) and (78) we have the following expression for the 
R 4. part of the affine curvature: 

0 0 0 * t,~z = V ,, Kuz - V :, Kuv 

= V~Fu~- V~Fua (79) 

Theorem. The antisymmetric tensor field Fuz satisfies the source-free 
Maxwell equations (a) VtvFv~ 1 =0 and (b) VuF~=O if and only if (c) 
~ J = 0 and (d) ~ = 0. 

Proof  Suppose that Fu~ satisfies the Maxwell equations (a) and (b). 
Then by using the antisymmetry of F~a it follows that (a) implies (c) and 
(b) implies (d). Conversely, if the R 4 curvature ~ is constructed from 
the antisyrnmetric tensor Fu~ as in (79), then it is easy to check that (c) 
implies (a) and (d) implies (b). �9 

The geometrical source-free Maxwell equations 

~ 1 = 0 
~ = 0 (80) 

are thus analogous to the geometric source-free Einstein equations 

R u v~ u = 0 (81) 
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From the point of view of geometrical structure we may include the 
Riemannian zero-torsion identity ~ - Rt~z l - 0  in the Einstein equations and 
rewrite equations (81) as 

Rtu~z] ~= 0 (82) 

The parallel between the affine Maxwell equations (80) and the Riemannian 
Einstein equations (82) is now apparent. 

6. CONCLUSIONS 

The goal of this paper is to provide support for the 

P(4) = O(1, 3)(~1~ 4. 

affine unified theory of gravitation and electromagnetism (Norris, 1985; 
Kheyfets and Norris, 1988). This support is provided by the link we have 
established between the charged symplectic form in standard Hamiltonian 
dynamics and affine connections on the affine frame bundle of spacetime. 

When classical point particles are influenced by only the gravitational 
and electromagnetic fields, the classical equations of motion may be derived 
from the free-particle Hamiltonian and the charged symplectic form on the 
cotangent bundle T*M of spacetime M. In Sections 2 and 3 we have shown 
that the charged symplectic form defines a generalized 

e(4) = O(1, 3)(~R 4. 

affine connection on the affine frame bundle AM of spacetime. Turning 
things around in Section 4, we found the conditions that a generalized affine 
connection (Fury, K~v) on AM must satisfy in order to define a symplectic 
form on T*M. The conditions are that the associated Gl(4) linear 
connection FuZ~ must be torsion-free, and the skew-symmetric part Ktuvl of 
the R 4. translation connection must locally take the form KErr1= 
V~,Av-V~A~ for some local covector field A~. 

In Section 5 we have shown that the classical equations of motion that 
follow from the free particle Hamiltonian and the charged symplectic form, 
that is, the Lorentz force law, may be interpreted in affine geometry as the 
equation of a generalized affine geodesic with respect to the P(4) affine 
connection ({~}, -eF~) on the affine frame bundle AM of spacetime. In 
the afline picture the influence of the gravitational field on classical particles 
is the general relativistic interaction characterized by the Riemannian O(1, 3) 
linear component {u} of the generalized affine connection. The new feature 
in the affine picture is that the electromagnetic interaction is characterized 
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by the translational part of the affine curvature, with the electromagnetic 
field tensor playing the role of the ~4. component -eF~v of the generalized 
affine connection. 

In addition to this affine geometrization of the classical equations of 
motion of charged test particles in combined gravitational and electromag- 
netic fields, we also showed in Section 5 how the source-free Maxwell equa- 
tions can be geometrized in terms of the •4. affine curvature. The affine 
geometric Maxwell equations (80) are remarkably parallel in structure to 
the Riemannian Einstein equations (82). The full coupled Einstein-Maxwell 
equations have been reinterpreted elsewhere (Norris, 1985) in terms of a 
P(4) affine geometry, and recently a variational principle has been found 
(Chilton and Norris, 1991) that yields the P(4) affine Einstein-Maxwell 
equations. 

A P P E N D I X  

We need the following facts and notations about the frame bundles of 
a 4-dimensional manifold (Kobayashi and Nomizu, 1963). The bundle of 
linear frames is the principal fiber bundle 

prOjLM 

L M  ~ M 

whose points consist of pairs (p, e.) where (e.) is a linear frame at p~M.  
The structure group Gl (4) acts on L M  on the right by 

(p, e~) . (a~)~(p,  ~)  = (p, efl~v) V(a~)~Gl(4) (A1) 

The bundle of affine frames A M  is the principal fiber bundle 

pro JAM 

AM , M 

whose points consist of triples (p, eu, t), where (e~) is a linear frame and t 
is a covector at p ~M. The structure group of A M  is A (4) = GI (4)| R 4., and 
its right action is as in (11) for (a~, ~)~A(4). The bundle L M  can now be 
identified with a subbundle LoM of A M  via the map y: LM-- . AM defined 
by 

r((p,  eu))= (p, eu, 0) (A2) 

All elements of A M  on the same fiber with (p, eu, 0) can be obtained by the 
right action of A(4) on (p, eu, 0). Thus, 

(p, eu, O)~(p,  eu, 0). (a~, ~v) = (P, ezaZ~, ~ve v) 
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where (e ~) is the coframe dual to (e~). These facts together with the 
map I - I : A M ~ L M ,  I-l(p, eu, t )=  (p, eu), defines A M  as a trivial R 4. bundle 
over LM. 

Given a vector space V on which GI (4) acts on the left via a represent- 
ation p: Gl (4)--,Auto(V), one may use a standard construction (Kobayashi 
and Nomizu, 1963) to build the vector bundle 

projE 

E , M  

associated to LM, where E = L M  xGt(4)V. In particular, if V = R  4. and 
p (~)  = ((a-1)uz)), then E1 = L M  x6t(4)R 4. may be identified with T * M  as 
follows. 

Each point of E1 is an equivalence class [(p, eu), (~v)], with (p, e~,)zLM 
and ( ~ ) E R  4.. The equivalence is defined by the action of GI(4) on 
L M  x R 4.  as  follows: (p, e u, ~v)~(q, eu, ~,')r and 3(aU)eGl (4) such 
that e u- -- e~a u~ and ~u = au~v.v The interpretation of the equivalence classes as 
covectors is very much in the classical vein. Select a representative pair 
((p, eu), (~))  in an equivalence class and construct the covector/3= ~ue u at 
p e M. Every other member in the equivalence class consists of a frame (p, ~u) 
and the linear components of fl relative to that frame. An equivalence class 
thus represents a covector at p by pairing off with each linear frame the 
frame components of the covector. E1 and T * M  are therefore isomorphic 
under the map. 

[(p, eu), (~v)l--'(P, ~ue ~) (A3) 

and we may consider each point u= (p, eu)~LM as a linear map 

u: (R4)*~(projr.M)-'(projL~t(u)) = T ' M ,  p =projLM(u) (A4) 

In the case of the cotangent bundle this map is given explicitly by 

(P, eu)(~) = ~u e~, V(~u) ~R4* (AS) 

with inverse map 

(p, eu)-'(a) = (a(eu)), V a e T ~ M  (A6) 

We observe that equation (A6) is equivalent to our first definition 
(2) of vertical coordinates z ,  on phase space T * M  for the free uncharged 
particle. To obtain the generalization (10) that includes the translations 
(9) we need to generalize E(M, R4*). 



Charged Symplectie 2-Form 1149 

Let A 4.  denote R 4.  with its natural affine structure (i.e., no preferred 
origin). Then A(4) acts on A 4. on the left by 

(a u, ~z)" (fir) = ((a-l)u~(fl u - ~u)) (A7) 

Now consider the fiber bundle E2 = A M  xA(4) A 4. associated to A M  via 
the action (A7). We will denote this bundle E2 also by 

projAr 

A T * M  ..... ~ M 

and refer to it as the affine cotangent bundle. 
A point in Ez is an equivalence class [(p, eu, t), (~0], and the interpreta- 

tion is as follows. Select a representative pair ((p, e,, t), (r and define the 
covector 

fl = ( ~u -  tu) eu (A8) 

Similarly, from another representative ((p, eu, i), ( (0)  of the same equiva- 
lence class construct 

/3= ( ( u -  7u)~ u (A9) 

If t =  fl, then 

( ,  = a~v+  qu (A10) 

where (a~, lh) is the unique element of A(4) relating the two affine frames. 
An equivalence class in E2 thus represents a covector fl at p ~ M  by pairing 
off each affine frame at p with the affine components of fl with respect to 
the given frame. E2 and T * M  are'therefore isomorphic under the map. 

[(p, e., t), (~0]--*(P, ( 3 . -  t.)#') (A11) 

A convenient notation for a point fl in E2 is t =  t~tfl, where tfl= t _  t is the 
linear component of fl with respect to the origin t. 

Each point w = (p, e~, t ) c A M  may now be considered as an affine map 
w: A 4. ~ A  T ' M ,  p = projA~(w), defined by 

(p, eu, t)(~v) = (p, (~u- t.) e~) (A12) 

with inverse 

(p, e~, t ) - ' ( f l )  = fl(eu) - tu (A13) 

This mapping is equivalent to the definition (10) of the affine coordinates 
used for the charged particle system. 

Further developments relating to the mathematical foundations of the 
affine geometry underlying the P(4) theory can be found in the paper by 
Fulp (1990). 
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